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Abstract. In this paper the correct quantum statistical description of an ideal photon gas is 

presented. It is shown that the ideal photon gas undergoes Bose-Einstein condensation for both 

three and two dimensional systems with a finite critical temperature 𝑇𝐶   ≠ 0. However, there 

is no phase transition observed in the case of a one-dimensional system. The phase transition 

is modeled using a quantum statistical analogy to the Clausius Clapeyron equation. 

Furthermore, from the heat released during condensation the heat capacity 𝐶𝑉 is calculated as 

a function of temperature 𝑇. The famous 𝜆-shaped peak at 𝑇 =  𝑇𝐶 is reproduced which 

identifies the phase transition as one of 1st order. At high temperatures the results of classical 

thermodynamics are reproduced. 

 

2.  Introduction                                                                                                                                             
Time dependent electric and magnetic fields give rise to electromagnetic waves. The energy 

released in electromagnetic radiation is quantized; the corresponding fundamental particles are 

photons. Photons are bosons and are described by the Bose Einstein statistics. One important 

feature of the boson quantum gas is Bose-Einstein condensation when a finite macroscopic 

fraction of bosons occupy the ground state. The condensation of bosons into the ground state 

is described by the equation 

𝑛0

𝑛
 = 1 −  (

𝑇

𝑇𝐶
)

3
2⁄

 

The corresponding phase transition was first theoretically predicted by A Einstein [1] and then 

experimentally confirmed by E A Cornell et al [2] as a phase transition of 2nd order. 

 

Bose-Einstein condensation of photons has been a controversial subject because (1) photons 

are massless particles and (2) the particle number of photons is generally not conserved.  

However, these difficulties can be overcome if one considers a photon gas in a Fabry-Perot 

cavity filled with a gaseous medium in order to achieve thermodynamic equilibrium. In this 

way the photon mass becomes effective due to the system now being finite. Additionally, 

absorption and emission processes of photons can be balanced so that the total number of 
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photons becomes conserved. Along these lines of thought Bose-Einstein condensation of light 

has been experimentally observed [3,4] and the presence and properties of the medium inside 

the cavity is important in this respect. From a statistical description of the equilibrium state the 

authors of reference [5] evaluate the critical temperature  𝑻𝑪 of the photon gas as a function of 

the number of photons in the system. It is claimed in ref [6] that an ideal photon gas undergoes 

Bose-Einstein condensation for dimensions 𝒅 = 𝟐 and 𝒅 = 𝟑 only. However, it is questionable 

whether these conclusions are generally applicable. Additionally, a system of non-interacting 

particles can in reality not be realized as even the slightest photon-photon interactions may 

produce enough heat for the system to transition into the gaseous phase. 
A lot of research in recent years is dedicated to the analogy between LASER physics and Bose Einstein 

condensation of quasiparticle systems like photons [7,8]. Bose Einstein condensation in LASER 

systems is an interesting topic due to their potential technological applications. In this article we want 

to contribute to a better understanding of this interesting field of study by investigating the phase 

transition in more detail. We present the correct quantum statistical description of the photon 

gas and the dependence of Bose Einstein condensation  on the dimension 𝑑 of the system. The 

article is organized as follows. In Section 2 the theory of the photon gas is presented and the 

critical temperature 𝑇𝐶 is calculated as a function of particle density 𝑛. It is shown that the 

phase transition into the condensed phase depends on the dimension 𝑑 of the system; analogies 

to the theory of magnetism are discussed. Conclusions are drawn in Section 4. 

 

 
 

3.  Theory                                                                                                                                                                                                       
In this section the theory of the photon gas is developed. The radiation field is described by the 

homogeneous wave equation 

(∆ −  
𝟏

𝒄𝟐 
  

𝝏𝟐

𝝏 𝒕𝟐)   𝜳 ( 𝒓, 𝒕) = 𝟎                                                                                                                  (1) 

Here 𝛹 (𝒓, 𝑡) denotes the space and time dependent wave function while 𝑐 is the speed of light 

in vacuum.  The solution to Eq (1) is decomposed with respect to plane waves so that 

𝛹 (𝒓, 𝑡) →  𝛹 (𝒌, 𝑡)  𝑒𝑖  𝒌∙𝒓                                                                                                                   (2) 

Inserting Eq (2) into Eq (1) yields the equation of motion  

(
𝜕2

𝜕 𝑡2  + ( 𝒌2  𝑐2 ))   𝛹 (𝒌, 𝑡) = 0                                                                                                              (3) 

of a linear harmonic oscillator with the 𝑘-dependent frequencies 𝜔 (𝒌) = 𝑐 |𝒌| and the discrete 

energy eigenvalues 

𝐸𝑛  =  ℏ 𝑐 |𝒌|  (𝑛 +  
1

2
)                                                                                                                            (4) 

𝑛 = 0,1,2,3, … …. Each photon then has the energy 

𝐸 =  ℏ 𝑐  |𝒌|  = 𝑐𝑝                                                                                                                                  (5) 

and the rest mass 𝑚0  = 0. 
The average number of photons is calculated from the parabolic density of states 𝜌 (𝐸) ~  𝐸2 

if 𝐸 ≥ 0. We then obtain 

〈𝑁〉  =  ∫ 𝜌 (𝐸)  𝑓+ (𝐸, 𝑇) 𝑑𝐸   ≅   2.032 ∙   107  𝑉  𝑇3+ ∞

− ∞
                                                                   (6) 

Here   𝑓+ (𝐸, 𝑇) =  
1

𝑒𝛽 (𝐸− 𝜇 )+1
  denotes the Bose-Einstein distribution function. It follows from 

Eq (6) that the average number of photons is temperature dependent. In particular  
〈𝑁〉 (𝑇 = 0)  = 0                                                                                                                                    (7) 

On the other hand, the internal energy of the photon gas is calculated from 

𝑈(𝑇, 𝑉) =  ∫ 𝐸  𝜌 (𝐸) 𝑓+ (𝐸, 𝑇) 𝑑𝐸 =  𝜎 𝑉 𝑇4+ ∞

− ∞
                                                                                (8) 
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Eq (8) is known as Stefan-Boltzmann’s law; 𝜎 is the Stefan-Boltzmann constant. Alternatively 

to Eq (8) the energy density 𝑈 𝑉⁄  of the photon gas can also be expressed via the spectral energy 

density 𝜀 ( 𝜔, 𝑇) as an integral over all frequencies 𝜔. 
𝑈

𝑉⁄  =  ∫ 𝜀 ( 𝜔, 𝑇)  𝑑𝜔
∞

0
                                                                                                                       (9) 

The spectral energy density is given by Planck’s law. 

 

Let’s consider Bose Einstein condensation of an ideal photon gas. The particle density 𝑛0 of 

the ground state 𝜀 (𝑘 = 0) = 0 can be written as 

𝑛0 = 𝑛 −  
2𝑆+1

𝜆3 (𝑇)
  𝑔3 (𝑧)                                                                                                                          (10) 

Here 𝜆 (𝑇) denotes the thermal de Broglie wavelength. The transition into the condensed phase 

is regulated by the condition 

𝑛  𝜆3  = (2𝑆 + 1) 𝑔3 (𝑧 = 1)                                                                                                                (11) 

 

and critical data are obtained from 
𝑛0

𝑛⁄  = 0.  It then follows 

𝑛 =  
2𝑆+1

𝜋2  (𝛽𝑐  ħ 𝑐)3
  𝑔3  (𝑧 = 1)  

𝑘𝐵  𝑇𝐶  (𝑛) =  ħ 𝑐  (
𝜋2  𝑛

(2𝑆+1)  𝑔3 (𝑧=1)
)

1
3⁄

                                                                                            (12) 

Here the polynomial 𝑔𝛼 (𝑧) is defined as the infinite series 

𝑔𝛼 (𝑧) =  ∑
𝑧𝑛

𝑛𝛼
∞
𝑛=1                                                                                                                              (13) 

As 𝑔3 (𝑧 = 1) defines the Riemann ξ-function via 

𝑔3 (𝑧 = 1) =  ∑
1

𝑛3  =   𝜉 (3)   ≅ 1.2021𝑛                                                                                        (14) 

it follows that there is a finite critical temperature 𝑇𝐶  (𝑛) ≠ 0 in the case of the three 

dimensional photon gas. A phase transition into the condensed phase is observed for this 

particular case.  Furthermore, evaluating  Eq (12) further yields for the critical temperature of 

the photon gas the particle density dependent result 

𝑇𝐶  (𝑛) = 0.3197  𝑛
1

3⁄                                                                                                                         (15) 

if 𝑛 is measured in 𝑐𝑚−3. The increase of 𝑇𝑐 with 𝑛 qualitatively agrees with the results of A 

Kruchkov [5]. In this way critical temperatures close to absolute zero can be obtained. 

However, it turns out that the phase transition depends on the dimension 𝑑 of the photon gas. 

 

For 𝑑 = 2 and 𝑑 = 1 the corresponding infinite series in the denominator of Eq (12) are 

𝑔2 (𝑧 = 1) =  ∑
1

𝑛2
 =  𝜉 (2) =  

𝜋

6𝑛   

𝑔1 (𝑧 = 1) =  ∑
1

𝑛
   →  ∞𝑛                                                                                                                 (16) 

In the one dimensional system the series diverges so that 𝑇𝐶 = 0. While the two dimensional 

system shows Bose Einstein condensation with a finite critical temperature 𝑇𝐶  ≠ 0 there is no 

such phase transition in the case of a one dimensional system. Our results confirm the findings 

of reference [5,9]. 

The one dimensional system is an interesting test case as it shows how photons behave on a 

quantum level. Similar dependencies of a phase transition on the dimension 𝑑 of the system 

are also observed in the case of magnetic systems (see Mermin-Wagner theorem, Heisenberg 

and Ising model  [10, 11] ).. Generally according to reference [12] the existence of a phase 

transition depends on the dimension 𝑑 of the system and the range of particle interactions. Even 

though strong particle interactions are more likely to cause phase transitions, phase transitions 

in non-interacting particle systems have been observed if particle movement is restricted and 

the particles bunch and stick together while entering the same energy state. 
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In the next section we will discuss how these phase transitions affect the behavior of the heat 

capacity   𝐶𝑉 (𝑇) of the photon gas. 

 

 

 

 

 

 

3. Results                                                                                                                                                

 

3.1 The entropy function 

The entropy function 𝑆 (𝑇) is calculated from the grand canonical potential and corresponding 

results are plotted in Fig 1 below. 

 

 
Figure 1. Entropy 𝑆 (𝑇) as a function of reduced temperature 𝑇 𝑇𝑐

⁄ . 

 

 

The entropy function 𝑆 (𝑇) is discontinuous at 𝑇 =  𝑇𝑐 with 

𝑆 (𝑇) ~ 𝑇
3

2⁄  for 𝑇 <  𝑇𝑐 which is the condensed phase and 

𝑆 (𝑇) ~  ln 𝑇   for 𝑇 >  𝑇𝑐 which is the vapor phase. 

From the entropy difference the heat released per particle during condensation can be 

computed. Alternatively ∆𝑄 can also be expressed using the Clausius Clapeyron equation and 

the slope of the vapor pressure curve. For the 3𝑑-system we then obtain 

∆ 𝑄 =  
5

2
  𝑘𝐵 𝑇 

𝑔5
2⁄   

(𝑧=1)

𝑔3
2⁄   (𝑧=1)

                                                                                                                        (14) 

Using similar conclusions as in the previous section it follows that for the 3𝑑-system ∆ 𝑄  ≠ 0 

which characterizes the phase transition as a 1st order phase transition. On the other hand, for 

the  2𝑑-systems ∆𝑄 = 0 , the entropy function 𝑆(𝑇) becomes continuous, and the phase 

transitions are now of 2nd order [13]. 

 

3.2 The heat capacity 

The heat capacity 𝐶𝑉 (𝑇)~ 𝑇
3

2⁄  in the condensed phase while at the critical temperature 𝑇𝑐 a 

peak value of 
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𝐶𝑉  (𝑇 =  𝑇𝑐 )  ≅   1.9267   𝑁 𝑘𝐵 

is reached. For 𝑇 →  ∞ the heat capacity asymptotically reaches the classical result  

𝐶𝑉   =  
3

2
  𝑁  𝑘𝐵 

These results are confirmed in Fig 2 below. 

 

 
                              Figure 2. Heat capacity 𝐶𝑉  (𝑇) as a function of reduced temperature 𝑇 𝑇𝑐

⁄ . 

 

Note the 𝜆-shaped peak at 𝑇 =  𝑇𝑐 which is a result of Bose Einstein condensation. The 

phase transition is again one of 1st order while 2nd order phase transitions are characterized by 

singularities and discontinuities in the response function at the critical temperature.  Similar 

results for 𝐶𝑉 (𝑇) are also reported in reference [14]. The results of Figure 2 can be explained 

using the two phase theory. For 𝑇 <  𝑇𝐶 two phases coexist in equilibrium, namely the 

condensed phase of 𝑁0 particles in the ground state and the remaining 𝑁 −  𝑁0 particles in the 

gaseous phase.; for 𝑇 >  𝑇𝐶 only the gaseous phase exists. The Lee Yang theory of Bose 

Einstein condensation [15] can be used to estimate the critical temperature 𝑇𝐶 for both 𝑑 = 2 

and 𝑑 = 3. The theory also proves that there is no phase transition for 𝑑 = 1 thereby 

confirming our results. 

    

Comparisons with experimental values turn out to be quite a challenging task as a system of 

interaction free particles can in reality not be produced. However, there is a qualitative 

agreement with reference [16] where a cusp singularity of 𝐶𝑉 at 𝑇 =  𝑇𝐶 is reported for a two-

dimensional photon gas. This confirms the earlier quoted result that the two-dimensional 

system  indeed shows a 2nd order phase transition. However, a level of uncertainty remains in 

the literature regarding the one-dimensional case. The authors of reference [17] report a 

crossover behavior from two dimensions into the one-dimensional quantum gas of light. 

However, in our calculations no phase transition is observed in the one-dimensional case. 

 

 

 

 

4.Conclusions 
In this paper we presented a theoretical quantum statistical description of an ideal photon gas. 

The phase transition from the vapor phase to the condensed phase depends on the dimension 𝑑 

of the system. This is confirmed from calculations of the critical temperature 𝑇𝐶, the entropy 
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function 𝑆 (𝑇), and the heat capacity 𝐶𝑉 (𝑇). For 3𝑑-systems this phase transition is of 1st order 

which is confirmed by the 𝜆-shaped peak in the heat capacity. On the other hand, the 2𝑑-system 

shows a second order phase transition in agreement with other authors. In the one-dimensional 

case no phase transition is observed. 
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